Tips and Tricks and Shortcuts on Inverse

Tips and Tricks for Inverse

Here, In this Page Tips and Tricks for Inverse is given. As clear by name Inverse means the opposite in position, directions, etc.

In mathematical language, it is defined as a reciprocal quantity.

In this page, we will discuss two types of INVERSE

  • Trigonometric Inverse
  • Algebraic Inverse
Tips and Tricks for Inverse

Trigonometric Inverse Tips and Tricks and Shortcuts:

They are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions.

Property of Trigonometry inverse functions

PROPERTY 1

a) sin-1( \frac{1}{x }  ) = cosec -1 x,x≥1 or x≤ -1

b) cos-1( \frac{1}{x } ) = sec -1x, x≥1 or x≤-1

c) tan -1( \frac{1}{x } ) = cot -1x, x>0

PROPERTY 2

a) sin-1(-x) = -sin-1(x), x ∈ [-1,1]

b) tan-1 (-x) = tan-1 (x) , x ∈ R

c) cosec-1 (-x) = -cosec-1 (x), |x| ≥ 1

PROPERTY 3

a) cos-1 (-x) =π-cos-1 x, x ∈ [-1,1]

b)  sec-1 (-x) = π -sec-1 x, |x|≥ 1

c) cot-1 (-x) = π – cot-1 x, x ∈ R

PROPERTY 4

a) sin-1 x+ cos-1x =\frac{π}{2} , x∈ [-1,1]

b) tan-1 x + cot-1 x = \frac{π}{2}, x∈ R

c) cosec-1 + sec-1x = \frac{π}{2} , |x|≥ 1

PROPERTY 5

a) tan-1 x + tan-1 y = tan-1 ( \frac{(x+y)}{(1-xy)} ), xy< 1

b)tan-1 x- tan -1 y = tan -1 ( \frac{(x-y)}{(1+xy)} ),xy > -1

PROPERTY 6

a)  2 tan-1x = sin-1( \frac{(2x)}{(1+x^2)} ), |x|≤1

b)  2 tan-1x = cos-1( \frac{(1-x^{2} )}{(1+x^{2})} ) , x≥0

c) 2 tan-1x = tan -1( \frac{(2x )}{(1-x^ 2)} ), -1<x<1

Algebraic Inverse Tips and Tricks and Shortcuts:

Inverse is a Reverse of any quantity.

Addition is the opposite of subtraction; division is the opposite of multiplication, and so on.

For Example-

If, f is the inverse of y,

Then, the inverse of f(x)= 2x+3 can be written as,

f-1 (y)= \frac{ (y-3)}{2} \

Inverse Tips and Tricks and Shortcuts

Question 1 .Prove that the inverse of an invertible odd function is also an odd function

Explanation

We know inverse of f is f-1
f(f-1(x)) = x

Now change x to-x
f(f-1 (x)) = -(-x)

Now change -x in terms of f (f-1(-x))
-f (f-1(-x))= f (f-1(-x))

which gives
f-1(x) = -f -1(-x)

And hence proved f-1 is also odd.

Question 2 Find the principal value of sin-1 (- \frac{1}{2} \ )

Options

A)  ( \frac{1}{2} )

B) (- \frac{1}{2} )

C) ( \frac{π}{2} )

D) (- \frac{π}{6} )

Correct Answer: D

Explanation

let  sin-1(- \frac{1}{2} ) = y,
then, sin y = (- \frac{1}{2} ) = sin ( \frac{π}{6} ) = sin (- \frac{π}{6})

We know that the range of the principal value branch of sin-1 is (- \frac{π}{2}  ), ( \frac{π}{2} )

and sin (- \frac{π}{6} \ ) = ( \frac{1}{2} )

Therefore the principal value of sin-1 (- \frac{1}{2} ) is (- \frac{π}{6} )

Read also:  Formulas for Inverse

                    How to Solve Inverse Questions Quickly

                    Inverse Questions and Answers

Prime Course Trailer

Related Banners

Get over 200+ course One Subscription

Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others

Checkout list of all the video courses in PrepInsta Prime Subscription

Checkout list of all the video courses in PrepInsta Prime Subscription