Segregate 0’s and 1’s in an array

Segregate 0’s and 1’s in an array in C

Here, in this section we will discuss the C program for segregate 0’s and 1’s in an array :

Given an array with 0’s and 1’s, we are segregating the 0’s and 1’s.

INPUT : 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1

OUTPUT : 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

Segregate 0’s and 1’s in an array

Segregate 0’s and 1’s in an array in C

  • Segregating 0’s and 1’s in an array means rearranging the elements in the array such that all the 0’s appear first, followed by all the 1’s. For example,
  • if we have an array [1, 0, 0, 1, 1, 0],segregating 0’s and 1’s would result in [0, 0, 0, 1, 1, 1].
  • This type of segregation is commonly used in computer science and programming when dealing with binary data or flags. It can also be used in machine learning algorithms as a preprocessing step for binary classification problems.
Segregate 0’s and 1’s in an array in C

Algorithm

  • Create two empty arrays, one for 0’s and one for 1’s.
  • Loop through the original array and for each element:
    a. If it is 0, append it to the array of 0’s.
    b. If it is 1, append it to the array of 1’s.
  • Concatenate the array of 0’s and the array of 1’s to form the segregated array.

This algorithm has a time complexity of O(n), where n is the number of elements in the array, as it requires a single loop through the array to segregate the elements. However, it requires extra space to store the two arrays of 0’s and 1’s, which could be a concern for large arrays with many 0’s and 1’s.

Code for Segregate 0’s and 1’s in an array in C​

Run
#include <stdio.h>
 
void segregate_01(int arr[], int n)
{
    int count_0 = 0, count_1 = 0;
    for (int i = 0; i < n; i++)
    {
        if (arr[i] == 0)
        {
            count_0++;
        }
        else
        {
            count_1++;
        }
    }

    for (int i = 0; i < count_0; i++)
    {
        printf("0 ");
    }

    for (int i = count_0; i < n; i++)
    {
        printf("1 ");
    }
}
int main()
{
    int arr[] = {0, 1, 0, 0, 1, 1, 1, 0, 1, 1};
    int n = sizeof(arr) / sizeof(arr[0]);
    printf("Array: ");
    for (int i=0;i < n;i++)
    {
        printf("%d ",arr[i]);
    }
    printf("\nSegregated array: ");
    segregate_01(arr,n);
    
    return 0;
}

Output

Array: 0 1 0 0 1 1 1 0 1 1 
Segregated array: 0 0 0 0 1 1 1 1 1 1 

Prime Course Trailer

Related Banners

Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription

Get over 200+ course One Subscription

Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others

Checkout list of all the video courses in PrepInsta Prime Subscription

Checkout list of all the video courses in PrepInsta Prime Subscription

Introduction to Trees

Binary Trees

Binary Search Trees

Traversals

  • Traversal in Trees
  • Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
  • Tree Traversals: Depth First Search (DFS) : C | C++ | Java
  • Construct a Binary Tree from Postorder and Inorder

B – Trees

AVL Trees

  • AVL Trees
    • AVL Trees: Introduction
    • AVL Tree Insertion : C | C++ | Java
    • AVL Tree Deletion : C | C++ | Java
    • Insertion in a Binary Tree (Level Order) – C | C++ | Java
    • Searching in Binary Tree – C | C++ | Java
    • Searching in a Binary Search Tree – C | C++ | Java

Complete Programs for Trees

  • Depth First Traversals – C | C++ | Java
  • Level Order Traversal – C | C++Java
  • Construct Tree from given Inorder and Preorder traversals – C | C++Java
  • Construct Tree from given Postorder and Inorder traversals – C | C++Java
  • Construct Tree from given Postorder and Preorder traversal – C | C++Java
  • Find size of the Binary tree – C | C++Java
  • Find the height of binary tree – C | C++Java
  • Find maximum in binary tree – C | C++Java
  • Check whether two tree are identical- CC++Java
  • Spiral Order traversal of Tree- CC++Java
  • Level Order Traversal Line by Line – C | C++Java
  • Hand shaking lemma and some Impotant Tree Properties.
  • Check If binary tree if Foldable or not.- CC++Java
  • check whether tree is Symmetric – C| C++Java.
  • Check for Children-Sum in Binary Tree- C|C++Java
  • Sum of all nodes in Binary Tree- CC++ | Java
  • Lowest Common Ancestor in Binary Tree- CC++ | Java

Introduction to Trees

Binary Trees

Binary Search Trees

Traversals

  • Traversal in Trees
  • Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
  • Tree Traversals: Depth First Search (DFS) : C | C++ | Java
  • Construct a Binary Tree from Postorder and Inorder

B – Trees

AVL Trees

  • AVL Trees
    • AVL Trees: Introduction
    • AVL Tree Insertion :  C | C++ | Java
    • AVL Tree Deletion : C | C++ | Java
    • Insertion in a Binary Tree (Level Order) – C | C++ | Java
    • Searching in Binary Tree – C | C++ | Java
    • Searching in a Binary Search Tree – C | C++ | Java

Complete Programs for Trees

  • Depth First Traversals – C | C++ | Java
  • Level Order Traversal – C | C++Java
  • Construct Tree from given Inorder and Preorder traversals – C | C++Java
  • Construct Tree from given Postorder and Inorder traversals – C | C++Java
  • Construct Tree from given Postorder and Preorder traversal – C | C++Java
  • Find size of the Binary tree – C | C++Java
  • Find the height of binary tree – C | C++Java
  • Find maximum in binary tree – C | C++Java
  • Check whether two tree are identical- CC++Java
  • Spiral Order traversal of Tree- CC++Java
  • Level Order Traversal LIne by Line – C | C++Java
  • Hand shaking lemma and some Impotant Tree Properties.
  • Check If binary tree if Foldable or not.- CC++Java
  • check whether tree is Symmetric  C| C++Java.
  • Check for Children-Sum in Binary Tree- C|C++Java
  • Sum of all nodes in Binary Tree- CC++ | Java
  • Lowest Common Ancestor in Binary Tree. CC++ | Java