Insertion In A Binary Search Tree In C++
Insertion In A Binary Search Tree
A binary search tree is a tree in which the data in left subtree is less than the root and the data in right subtree is greater than the root. In this article, insertion is performed using recursion in C++.
Rules For Binary Search Tree:
- Left subtree for any given node will only contain nodes which are lesser than the current node
- Right subtree for any given node will only contain nodes which are greater than the current node
- This is valid for all nodes present in BST.
Algorithm To Insert In BST:
- Input the value of the element to be inserted.
- Start from the root.
- If the input element is less than current node, recurse for left subtree otherwise for right subtree.
- Insert the node wherever NULL is encountered.
Code Implementation for Insertion in a Binary Search Tree in C++
Run
#include<bits/stdc++.h> using namespace std; class Tree { public: int data; Tree *left = NULL, *right = NULL; // Constructor initialised Tree (int x) { data = x; left = NULL; right = NULL; } }; Tree *insert_node (Tree * root, int x) { if (root == NULL) { Tree *temp = new Tree (x); return temp; } if (root->data > x) { root->left = insert_node (root->left, x); } else { root->right = insert_node (root->right, x); } return root; } void inorder_traversal (Tree * root) { if (root == NULL) return; inorder_traversal (root->left); cout << root->data << " "; inorder_traversal (root->right); } int main () { Tree *root = new Tree (15); root->left = new Tree (13); root->right = new Tree (18); root->left->left = new Tree (8); root->left->right = new Tree (14); root->right->left = new Tree (16); root->right->right = new Tree (19); cout << "Inorder Traversal of the Binary Search Tree:"; inorder_traversal (root); cout <
Output: Inorder Traversal of the Binary Search Tree:8 13 14 15 16 18 19 Value to be inserted : 17 Inorder Traversal :8 13 14 15 16 17 18 19
Prime Course Trailer
Related Banners
Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription
Introduction to Trees
Binary Trees
- Binary Tree in Data Structures (Introduction)
- Tree Traversals: Inorder Postorder Preorder : C | C++ | Java
- Inorder Postorder PreOrder Traversals Examples
- Tree Traversal without Recursion
Binary Search Trees
Traversals
- Traversal in Trees
- Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
- Tree Traversals: Depth First Search (DFS) : C | C++ | Java
- Construct a Binary Tree from Postorder and Inorder
B – Trees
AVL Trees
- AVL Trees
Complete Programs for Trees
- Depth First Traversals – C | C++ | Java
- Level Order Traversal – C | C++ | Java
- Construct Tree from given Inorder and Preorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Inorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Preorder traversal – C | C++ | Java
- Find size of the Binary tree – C | C++ | Java
- Find the height of binary tree – C | C++ | Java
- Find maximum in binary tree – C | C++ | Java
- Check whether two tree are identical- C| C++| Java
- Spiral Order traversal of Tree- C | C++| Java
- Level Order Traversal Line by Line – C | C++| Java
- Hand shaking lemma and some Impotant Tree Properties.
- Check If binary tree if Foldable or not.- C| C++| Java
- check whether tree is Symmetric – C| C++| Java.
- Check for Children-Sum in Binary Tree- C|C++| Java
- Sum of all nodes in Binary Tree- C | C++ | Java
- Lowest Common Ancestor in Binary Tree- C | C++ | Java
Introduction to Trees
Binary Trees
- Binary Tree in Data Structures (Introduction)
- Tree Traversals: Inorder Postorder Preorder : C | C++ | Java
- Inorder Postorder PreOrder Traversals Examples
- Tree Traversal without Recursion
Binary Search Trees
Traversals
- Traversal in Trees
- Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
- Tree Traversals: Depth First Search (DFS) : C | C++ | Java
- Construct a Binary Tree from Postorder and Inorder
B – Trees
AVL Trees
- AVL Trees
Complete Programs for Trees
- Depth First Traversals – C | C++ | Java
- Level Order Traversal – C | C++ | Java
- Construct Tree from given Inorder and Preorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Inorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Preorder traversal – C | C++ | Java
- Find size of the Binary tree – C | C++ | Java
- Find the height of binary tree – C | C++ | Java
- Find maximum in binary tree – C | C++ | Java
- Check whether two tree are identical- C| C++| Java
- Spiral Order traversal of Tree- C | C++| Java
- Level Order Traversal LIne by Line – C | C++| Java
- Hand shaking lemma and some Impotant Tree Properties.
- Check If binary tree if Foldable or not.- C| C++| Java
- check whether tree is Symmetric C| C++| Java.
- Check for Children-Sum in Binary Tree- C|C++| Java
- Sum of all nodes in Binary Tree- C | C++ | Java
- Lowest Common Ancestor in Binary Tree. C | C++ | Java
Get over 200+ course One Subscription
Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others
Login/Signup to comment