Foldable Binary Tree

Check if a Tree is foldable or Not

Here, in this page we will write a Java program to check whether the given binary tree is foldable or not. A Tree is said to be foldable if its left and right counter part can be made to overlap with each other .

foldable binary tree

Foldable Binary Tree

Algorithm :

  • If tree is empty, then return true.
  • Convert the left subtree to its mirror image mirror(root->left);
  • Check if the structure of left subtree and right subtree is same and store the result. res = isStructSame(root->left, root->right);
  • isStructSame() recursively compares structures of two subtrees and returns true if structures are same
  • Revert the changes made in step 2 to get the original tree. mirror(root->left);
  • Return result res stored in step 2.
Check If binary tree is Foldable or not in Java Language

Code in Java for Level Order Traversal Line by Line

Run
class Node {
    int data;
    Node left, right;

    public Node(int item) {
        data = item;
        left = right = null;
    }
    public Node() {
        data = 0;
        left = right = null;
    }
}

// Binary tree Class
class BTree {

    static Node root;
    static boolean isFoldableTree(Node node) {
        if (node == null) {
            return true;
        }
        return isFoldable(node.left, node.right);
    }

    static boolean isFoldable(Node nodeLeft, Node nodeRight) {

        //Check both left and right node is null, if yes then that is fine, return true.
        if (nodeLeft == null && nodeRight == null) {
            return true;
        }
        //If one is present and other is null, return false.
        if (nodeLeft == null || nodeRight == null) {
            return false;
        }
        // The most Important step is -> when you are Checking if it is structurally a mirror image , 
        // Send the left child of left subtree and right child of right subtree //   together. Similarly,
        // send the right child of left subtree and left child of right subtree. 
        boolean left = isFoldable(nodeLeft.left, nodeRight.right);
        boolean right = isFoldable(nodeLeft.right, nodeRight.left);

        return (left && right);
    }
}
public class Main{



    public static void main(String[] args) {
        BTree tree = new BTree();
        tree.root = new Node(1);
        tree.root.left = new Node(5);
        tree.root.right = new Node(4);
        tree.root.left.left = new Node(9);
        tree.root.left.right = new Node(7);
        tree.root.right.left = new Node(10);
        tree.root.right.right = new Node(13);
        System.out.println(" The Given Tree is Foldable :  " + tree.isFoldableTree(tree.root));

    }
}    

Output

 The Given Tree is Foldable :  true  

Prime Course Trailer

Related Banners

Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription

Get over 200+ course One Subscription

Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others

Checkout list of all the video courses in PrepInsta Prime Subscription

Checkout list of all the video courses in PrepInsta Prime Subscription

Introduction to Trees

Binary Trees

Binary Search Trees

Traversals

  • Traversal in Trees
  • Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
  • Tree Traversals: Depth First Search (DFS) : C | C++ | Java
  • Construct a Binary Tree from Postorder and Inorder

B – Trees

AVL Trees

  • AVL Trees
    • AVL Trees: Introduction
    • AVL Tree Insertion : C | C++ | Java
    • AVL Tree Deletion : C | C++ | Java
    • Insertion in a Binary Tree (Level Order) – C | C++ | Java
    • Searching in Binary Tree – C | C++ | Java
    • Searching in a Binary Search Tree – C | C++ | Java

Complete Programs for Trees

  • Depth First Traversals – C | C++ | Java
  • Level Order Traversal – C | C++Java
  • Construct Tree from given Inorder and Preorder traversals – C | C++Java
  • Construct Tree from given Postorder and Inorder traversals – C | C++Java
  • Construct Tree from given Postorder and Preorder traversal – C | C++Java
  • Find size of the Binary tree – C | C++Java
  • Find the height of binary tree – C | C++Java
  • Find maximum in binary tree – C | C++Java
  • Check whether two tree are identical- CC++Java
  • Spiral Order traversal of Tree- CC++Java
  • Level Order Traversal Line by Line – C | C++Java
  • Hand shaking lemma and some Impotant Tree Properties.
  • Check If binary tree if Foldable or not.- CC++Java
  • check whether tree is Symmetric – C| C++Java.
  • Check for Children-Sum in Binary Tree- C|C++Java
  • Sum of all nodes in Binary Tree- CC++ | Java
  • Lowest Common Ancestor in Binary Tree- CC++ | Java

Introduction to Trees

Binary Trees

Binary Search Trees

Traversals

  • Traversal in Trees
  • Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
  • Tree Traversals: Depth First Search (DFS) : C | C++ | Java
  • Construct a Binary Tree from Postorder and Inorder

B – Trees

AVL Trees

  • AVL Trees
    • AVL Trees: Introduction
    • AVL Tree Insertion :  C | C++ | Java
    • AVL Tree Deletion : C | C++ | Java
    • Insertion in a Binary Tree (Level Order) – C | C++ | Java
    • Searching in Binary Tree – C | C++ | Java
    • Searching in a Binary Search Tree – C | C++ | Java

Complete Programs for Trees

  • Depth First Traversals – C | C++ | Java
  • Level Order Traversal – C | C++Java
  • Construct Tree from given Inorder and Preorder traversals – C | C++Java
  • Construct Tree from given Postorder and Inorder traversals – C | C++Java
  • Construct Tree from given Postorder and Preorder traversal – C | C++Java
  • Find size of the Binary tree – C | C++Java
  • Find the height of binary tree – C | C++Java
  • Find maximum in binary tree – C | C++Java
  • Check whether two tree are identical- CC++Java
  • Spiral Order traversal of Tree- CC++Java
  • Level Order Traversal LIne by Line – C | C++Java
  • Hand shaking lemma and some Impotant Tree Properties.
  • Check If binary tree if Foldable or not.- CC++Java
  • check whether tree is Symmetric  C| C++Java.
  • Check for Children-Sum in Binary Tree- C|C++Java
  • Sum of all nodes in Binary Tree- CC++ | Java
  • Lowest Common Ancestor in Binary Tree. CC++ | Java