Insertion in a Binary Tree (Level Order)
Insertion In A Binary Tree
Given a tree and a key, add a node in the first available node in the tree. After adding the node, print the level order traversal. In this article, Queue data structure is used to add a node. In this article, we will learn about the process of insertion in a binary tree (Level Order) in C++.
Prerequisite Knowledge:
- A Binary Tree is a data structure with maximum of two children for each parent.
- Level Order Traversal is an example Of Breadth First Search algorithm.
- Level order is a traversal in which each node is visited in the level before we move to a lower level.
- Queues are used to find the level order traversal.
Algorithm:
- Create a queue q.
- If root is NULL, add node and return.
- Else continue until q is not empty.
- If a child does not exists, add the node there.
- Otherwise add the node to the leftmost node.
Code Implementation for Insertion in a Binary Tree in C++
Run
#include<bits/stdc++.h> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode (int x):val (x), left (NULL), right (NULL) { } }; void insert (TreeNode * &root, int val) { if (root == NULL) { root = new TreeNode (val); return; } if (val < root->val) { insert (root->left, val); } else { insert (root->right, val); } } void inorder_traversal (TreeNode * root) { if (root == NULL) return; // Visit Left subtree inorder_traversal (root->left); // Print the data cout << root->val << " "; inorder_traversal (root->right); // Visit right subtree inorder_traversal (root->right); } int main () { TreeNode *root = NULL; insert (root, 50); insert (root, 20); insert (root, 70); insert (root, 10); insert (root, 30); insert (root, 60); insert (root, 80); cout << "The binary tree is : "; inorder_traversal (root); return 0; }
Output: The binary tree is : 10 20 30 50 60 70 80
Prime Course Trailer
Related Banners
Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription
Introduction to Trees
Binary Trees
- Binary Tree in Data Structures (Introduction)
- Tree Traversals: Inorder Postorder Preorder : C | C++ | Java
- Inorder Postorder PreOrder Traversals Examples
- Tree Traversal without Recursion
Binary Search Trees
Traversals
- Traversal in Trees
- Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
- Tree Traversals: Depth First Search (DFS) : C | C++ | Java
- Construct a Binary Tree from Postorder and Inorder
B – Trees
AVL Trees
- AVL Trees
Complete Programs for Trees
- Depth First Traversals – C | C++ | Java
- Level Order Traversal – C | C++ | Java
- Construct Tree from given Inorder and Preorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Inorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Preorder traversal – C | C++ | Java
- Find size of the Binary tree – C | C++ | Java
- Find the height of binary tree – C | C++ | Java
- Find maximum in binary tree – C | C++ | Java
- Check whether two tree are identical- C| C++| Java
- Spiral Order traversal of Tree- C | C++| Java
- Level Order Traversal Line by Line – C | C++| Java
- Hand shaking lemma and some Impotant Tree Properties.
- Check If binary tree if Foldable or not.- C| C++| Java
- check whether tree is Symmetric – C| C++| Java.
- Check for Children-Sum in Binary Tree- C|C++| Java
- Sum of all nodes in Binary Tree- C | C++ | Java
- Lowest Common Ancestor in Binary Tree- C | C++ | Java
Introduction to Trees
Binary Trees
- Binary Tree in Data Structures (Introduction)
- Tree Traversals: Inorder Postorder Preorder : C | C++ | Java
- Inorder Postorder PreOrder Traversals Examples
- Tree Traversal without Recursion
Binary Search Trees
Traversals
- Traversal in Trees
- Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
- Tree Traversals: Depth First Search (DFS) : C | C++ | Java
- Construct a Binary Tree from Postorder and Inorder
B – Trees
AVL Trees
- AVL Trees
Complete Programs for Trees
- Depth First Traversals – C | C++ | Java
- Level Order Traversal – C | C++ | Java
- Construct Tree from given Inorder and Preorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Inorder traversals – C | C++ | Java
- Construct Tree from given Postorder and Preorder traversal – C | C++ | Java
- Find size of the Binary tree – C | C++ | Java
- Find the height of binary tree – C | C++ | Java
- Find maximum in binary tree – C | C++ | Java
- Check whether two tree are identical- C| C++| Java
- Spiral Order traversal of Tree- C | C++| Java
- Level Order Traversal LIne by Line – C | C++| Java
- Hand shaking lemma and some Impotant Tree Properties.
- Check If binary tree if Foldable or not.- C| C++| Java
- check whether tree is Symmetric C| C++| Java.
- Check for Children-Sum in Binary Tree- C|C++| Java
- Sum of all nodes in Binary Tree- C | C++ | Java
- Lowest Common Ancestor in Binary Tree. C | C++ | Java
Get over 200+ course One Subscription
Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others
Login/Signup to comment