Java program to check whether linked list is palindrome or not
Java program to check whether linked list is palindrome or not
Java program to check whether the linked list is palindrome or not. In this program, we have to check whether the given linked list is palindromic or not. A palindrome is a list which has the property of reversing itself. To check whether a number is palindrome or not, we traverse the list and check if any element from the starting half doesn’t match with the ending half of a list then we say it’s not a palindrome number otherwise it is palindrome.
Implementation for Checking a list is palindrome or not :-
- First get the middle node of the given Linked List let take Consideration for both the odd and even cases.
- Then, we will reverse the second half of the Linked List.
- We will compare the second half with the first half if both the halves are identical then the linked list is a palindrome.
- Reconstruct the actual given Linked List by again reversing the second half and attaching it back to the first half.
Example :
Given Linked list is 1–>2–>3–>2–>1
After reversing it will stay as it is
1–>2–>3–>2–>1 (true) (It is a palindrome list)
Code in JAVA Programming Language
import java.util.*; public class Main { public static void main (String[]args) throws Exception { LinkedList ll = new LinkedList (); ll.addFirst (10); ll.addFirst (20); ll.addFirst (30); ll.addFirst (40); ll.addFirst (40); ll.addFirst (30); ll.addFirst (20); ll.addFirst (10); ll.display (); System.out.println (ll.isPalindrome ()); } } class LinkedList { private class Node { int data; Node next; // Node constructor // There are two fields in the node- data and address of next node public Node (int data, Node next) { this.data = data; this.next = next; } } private Node head; private Node tail; private int size; // Linked list constructor public LinkedList () { this.head = null; this.tail = null; this.size = 0; } // Function to find the size of linked list public int size () { return this.size; } // Function to check whether linked list is empty or not public boolean isEmpty () { return this.size () == 0; } // Function to traverse and print the linked list public void display () { Node temp = head; while (temp != null) { System.out.print (temp.data + " "); temp = temp.next; } System.out.println ("END"); } // Function to add a node in beginning of linked list public void addFirst (int item) { // Create a temp node which points to head Node temp = new Node (item, head); // If linked list is empty, temp is the head and tail node both if (this.size == 0) { this.head = this.tail = temp; } // else set the head such that it now points to temp node else { this.head = temp; } this.size++; } public boolean isPalindrome () { HeapMover start = new HeapMover (); start.node = this.head; return this.isPalindrome (start, this.head, 0); } //Function to check whether linked list is palindrome or not private boolean isPalindrome (HeapMover start, Node end, int floor) { //Base case is when we reach end of linked list if (end == null) { return true; } //Recursive calls boolean rv = this.isPalindrome (start, end.next, floor + 1); //If any recursive call results in false then return false if (rv == false) { return false; } //Till floor is greater than 1/2 * size of linked list if (floor >= this.size () / 2) { //If data of start node and end node is not same then it is not palindrome if (start.node.data != end.data) { return false; } //Change start node so that it now points to the next node else { start.node = start.node.next; return true; } } return rv; } //Class to keep a node in the heap private class HeapMover { Node node; } }
Output: 10 20 30 40 40 30 20 10 END true
Prime Course Trailer
Related Banners
Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription
Get over 200+ course One Subscription
Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others
Singly Linked List
- Introduction to Linked List in Data Structure
Click Here - Linked List in –
- Singly Linked List in –
- Insertion in singly Linked List –
- Insertion at beginning in singly Linked List –
- Insertion at nth position in singly Linked List –
- Insertion at end in singly Linked List –
- Deletion in singly Linked List –
- Deletion from beginning in singly linked list :
- Deletion from nth position in singly linked list :
- Deletion from end in singly linked list :
- Linked List Insertion and Deletion –
C | C++ | Java - Reverse a linked list without changing links between nodes (Data reverse only) –
C | C++ | Java - Reverse a linked list by changing links between nodes –
- Print reverse of a linked list without actually reversing –
- Print reverse of a linked list without actually reversing –
- Insertion in the middle Singly Linked List –
- Insertion in a Sorted Linked List –
- Delete alternate nodes of a Linked List –
- Find middle of the linked list –
- Reverse a linked list in groups of given size –
- Find kth node from end of the linked list –
- Append the last n nodes of a linked list to the beginning of the list –
- Check whether linked list is palindrome or not –
- Fold a Linked List –
- Insert at given Position –
- Deletion at given Position –
Singly Linked List
- Introduction to Linked List in Data Structure
- Linked List in – C | C++ | Java
- Singly Linked List in – C | C++ | Java
- Insertion in singly Linked List – C | C++ | Java
- Deletion in singly Linked List – C | C++ | Java
- Reverse a linked list without changing links between nodes (Data reverse only) – C | C++ | Java
- Linked List Insertion and Deletion – C | C++ | Java
- Reverse a linked list by changing links between nodes – C | C++ | Java
- Linked List insertion in the middle – C | C++ | Java
- Print reverse of a linked list without actually reversing – C |C++ | Java
- Search an element in a linked list – C | C++ | Java
- Insertion in a Sorted Linked List – C | C++ | Java
- Delete alternate nodes of a Linked List – C | C++ | Java
- Find middle of the linked list – C | C++ | Java
- Reverse a linked list in groups of given size – C | C++ | Java
- Find kth node from end of the linked list – C | C++ | Java
- Append the last n nodes of a linked list to the beginning of the list – C | C++ | Java
- Check whether linked list is palindrome or not – C | C++ | Java
- Fold a Linked List – C | C++ | Java
- Insert at a given position – C | C++ | Java
- Delete at a given position – C | C++ | Java