# Accenture Coding Question 4

## Coding Question 4

N-base notation is a system for writing numbers which uses only n different symbols, This symbols are the first n symbols from the given notation list(Including the symbol for o) Decimal to n base notation are (0:0, 1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9, 10:A,11:B and so on upto 35:Z)

Implement the following function, Char* DectoNBase(int n, int num):

The function accept positive integer n and num Implement the function to calculate the n-base equivalent of num and return the same as a string

Steps:

• Divide the decimal number by n,Treat the division as the integer division
• Write the the remainder (in  n-base notation)
• Divide the quotient again by n, Treat the division as integer division
• Repeat step 2 and 3 until the quotient is 0
• The n-base value is the sequence of the remainders from last to first

Assumption:

1 < n < = 36

Example

Input

n: 12

num: 718

Output

4BA

Explanation

num       Divisor       quotient       remainder

718           12               59                 10(A)

59             12                4                   11(B)

4               12                0                   4(4)

Sample Input

n: 21

num: 5678

Sample Output

CI8

```n = int(input())
num = int(input())
reminder = []
quotient = num // n
reminder.append(num%n)
while quotient != 0:
reminder.append(quotient%n)
quotient = quotient // n
reminder = reminder[::-1]
equivalent = ''
for i in reminder:
if i > 9:
a = i - 9
a = 64 + a
equivalent+=chr(a)
else:
equivalent+=str(i)
print(equivalent)```
```Input:
21
5678
Output:
CI8```