Deletion at the beginning of the Singly Linked List in C

How to Delete the node at the beginning of the Singly Linked List?

Let’s have a look at the code to delete from a singly linked list from the beginning i.e. the start or first node. We will discuss all possible ways of doing so in this post.

Deletion at the beginning of the Singly Linked List using C

Deletion at The Beginning

Steps needed for deletion at the beginning of the Singly Linked List

  • Move the current head from 1st node to the next node
  • Delete the first node using the free method
  • If the Linked List is empty that it is not possible to delete
Deletion at the beginning of the Singly Linked List in C

Determine how to make Deletion node Structure:-

The following code will do the job –
void deleteStart (struct Node **head)
{
  struct Node *temp = *head;

  // if there are no nodes in Linked List can't delete
  if (*head == NULL)
    {
      printf ("Linked List Empty, nothing to delete");
      return;
    }

  // move head to next node
  *head = (*head)->next;
  printf ("Deleted: %d\n", temp->data);
  free (temp);
}

C Code for deletion at the beginning of the Singly Linked List:-

Run
#include<stdio.h>
#include<stdlib.h>

struct Node
{
  int data;
  struct Node *next;
};

void deleteStart (struct Node **head)
{
  struct Node *temp = *head;

  // if there are no nodes in Linked List can't delete
  if (*head == NULL)
    {
      printf ("Linked List Empty, nothing to delete");
      return;
    }

  // move head to next node
  *head = (*head)->next;
  printf ("Deleted: %d\n", temp->data);
  free (temp);

}

void display (struct Node *node)
{

  // as linked list will end when Node is Null
  while (node != NULL)
    {
      printf ("%d ", node->data);
      node = node->next;
    }
  printf ("\n");
}

int main ()
{
  //creating 4 pointers of type struct Node
  //So these can point to address of struct type variable
  struct Node *head = NULL;
  struct Node *node2 = NULL;
  struct Node *node3 = NULL;
  struct Node *node4 = NULL;

  // allocate 3 nodes in the heap 
  head = (struct Node *) malloc (sizeof (struct Node));
  node2 = (struct Node *) malloc (sizeof (struct Node));
  node3 = (struct Node *) malloc (sizeof (struct Node));
  node4 = (struct Node *) malloc (sizeof (struct Node));


  head->data = 22;		// data set for head node 
  head->next = node2;		// next pointer assigned to address of node2 

  node2->data = 30;
  node2->next = node3;

  node3->data = 24;
  node3->next = node4;

  node4->data = 20;
  node4->next = NULL;

  /*No need for & i.e. address as we do not
     need to change head address
   */
  printf ("Linked List Before Operations : ");
  display (head);

  deleteStart (&head);
  deleteStart (&head);

  printf ("Linked List After Operations : ");
  display (head);

  return 0;
}

Output

Linked List Before Operations : 22 30 24 20 
Deleted: 22
Deleted: 30
Linked List After Operations : 24 20

Prime Course Trailer

Related Banners

Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription

Get over 200+ course One Subscription

Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others

Checkout list of all the video courses in PrepInsta Prime Subscription

Checkout list of all the video courses in PrepInsta Prime Subscription

Singly Linked List

  • Introduction to Linked List in Data Structure
  • Linked List in – C | C++ | Java
  • Singly Linked List in – C | C++ | Java
  • Insertion in singly Linked List – C | C++ | Java
    • Insertion at beginning in singly Linked List  – C | C++Java
    • Insertion at nth position in singly Linked List  – C | C++Java
    • Insertion at end in singly Linked List  – C | C++Java
  • Deletion in singly Linked List  – C | C++Java
    • Deletion from beginning in singly linked list : C | C++ | Java
    • Deletion from nth position in singly linked list : C | C++ | Java
    • Deletion from end in singly linked list : C | C++ | Java
  • Reverse a linked list without changing links between nodes (Data reverse only) – C | C++Java
  • Linked List Insertion and Deletion – C | C++Java
  • Reverse a linked list by changing links between nodes – C | C++Java
  • Linked List insertion in the middle – C | C++Java
  • Print reverse of a linked list without actually reversing – C |C++ | Java
  • Search an element in a linked list – C | C++Java
  • Insertion in a Sorted Linked List – C | C++Java
  • Delete alternate nodes of a Linked List – C | C++Java
  • Find middle of the linked list – C | C++Java
  • Reverse a linked list in groups of given size – C | C++Java
  • Find kth node from end of the linked list – C | C++Java
  • Append the last n nodes of a linked list to the beginning of the list – C | C++Java
  • Check whether linked list is palindrome or not – C | C++Java
  • Fold a Linked List – C | C++Java
  • Insert at a given position – C | C++Java
  • Delete at a given position – C | C++Java

Singly Linked List

  • Introduction to Linked List in Data Structure
    Click Here
  • Linked List in –
    C | C++ | Java
  • Singly Linked List in –
    C | C++ | Java
  • Insertion in singly Linked List –
    C | C++ | Java
  • Insertion at beginning in singly Linked List  –
    C | C++Java
  • Insertion at nth position in singly Linked List  –
    C | C++Java
  • Insertion at end in singly Linked List  –
    C | C++Java
  • Deletion in singly Linked List  –
    C | C++Java
  • Deletion from beginning in singly linked list :
    C | C++ | Java
  • Deletion from nth position in singly linked list :
    C | C++ | Java
  • Deletion from end in singly linked list :
    C | C++ | Java
  • Linked List Insertion and Deletion –
    C | C++Java
  • Reverse a linked list without changing links between nodes (Data reverse only) –
    C | C++Java
  • Reverse a linked list by changing links between nodes –
    C | C++Java
  • Print reverse of a linked list without actually reversing –
    C |C++Java
  • Print reverse of a linked list without actually reversing –
    C |C++Java
  • Insertion in the middle Singly Linked List –
    C | C++Java
  • Insertion in a Sorted Linked List –
    C | C++Java
  • Delete alternate nodes of a Linked List –
    C | C++Java
  • Find middle of the linked list –
    C | C++Java
  • Reverse a linked list in groups of given size –
    C | C++Java
  • Find kth node from end of the linked list –
    C | C++Java
  • Append the last n nodes of a linked list to the beginning of the list –
    C | C++Java
  • Check whether linked list is palindrome or not –
    C | C++Java
  • Fold a Linked List –
    C | C++Java
  • Insert at given Position –
    C | C++Java
  • Deletion at given Position –
    C | C++Java