# Finding Roots of a quadratic equation

## This is the Java Program to Find the Roots of a Quadratic Equation.

The Standard Form of a Quadratic Equation looks like this:

##### ax2+bx+c=0
• ab and c are known values. a can’t be 0.
• x” is the variable.

We need to find roots for quadratic equation . #### Explanation:

A quadratic equation is an equation of the second degree, meaning it contains at least one term that is squared. The standard form is ax² + bx + c = 0 with a, b, and c being constants, or numerical coefficients, and x is an unknown variable. One absolute rule is that the first constant “a” cannot be a zero.

#### Implementation :

Step 1) Start

Step 2)Take user Input for coefficients namely a ,b,c

Step3) To calculate the roots −

• Calculate the determinant value (b*b)-(4*a*c).
• If determinant is greater than 0 roots are [-b +squareroot(determinant)]/2*a and [-b -squareroot(determinant)]/2*a.
• If determinant is equal to 0 root value is (-b+Math.sqrt(d))/(2*a)

step 4) Print answer

step 5) End

#### Java code :

//Java Program to Find the Roots of a Quadratic Equation

import java.util.*;
import java.io.*;

public class PrepInsta {
// Function to find and display the roots of quadratic equation
public static void main(String[] args) {
Scanner scnew Scanner(System.in);
double a,b,c;
System.out.println(“Enter the coefficients of the quadratic equation”);
a = sc.nextDouble();
b = sc.nextDouble();
c = sc.nextDouble();

double determinant = Math.pow(b,2) – 4*a*c;
if(determinant > 0){
System.out.println(“Roots are “ + (-b+Math.sqrt(determinant))/(2*a)
+ ” and “ + (-b-Math.sqrt(determinant))/(2*a));
}else if (determinant == 0){
System.out.println(“Roots are “ + -b/(2*a));
}
else{
System.out.println(“Roots are “ + -b/(2*a) + “+i” +
Math.sqrt(-determinant)/(2*a) + ” and “
+ -b/(2*a) + “-i” + Math.sqrt(-determinant)/(2*a));
}
}
}
```Output:Enter the coefficients of the quadratic equation
1
-5
6
Roots are 3.0 and 2.0```