def prime(num):
if num==1:
return False
if num==2 or num==3:
return True
if num%2==0 or num%3==0:
return False
i=5
while(i*i<=num):
if(num%i==0 or num%(i+2)==0):
return False
i+=6
return True
def func(num):
i=1
while(num!=0):
if prime(i):
num=num-1
i=i+1
return i-1
def function(num):
if num%2==0:
return func(num//2)
else:
return func(num//2+1)
def fibbo(n):
a,b=0,1
if n==0:
print(“0”)
else:
temp=0
for i in range(n-1):
temp=a+b
a,b=b,temp
print(temp)
def odd(n):
x=2
while n>1:
prime=0
for i in range(1,x+2):
if (x+1)%i==0:
prime+=1
if prime==2:
n=n-1
x=x+1
print(x)
ip=int(input())
if ip%2==0:
fibbo(ip)
else:
odd(ip)
void fibonacci(int n)
{
/* Variable initialization */
int a = 0, b = 1, next;
//the below code is for fibonacci series till nth position
for (int i = 1; i<=n; i++)
{
next = a + b;
a = b;
b = next;
}
//will print a not b or next as they are stored to calculate next and next to next term
printf("%d", a);
}
void prime(int n)
{
int i, j, flag, count =0;
//as prime numbers in given question start from 2
for (i=2; i<=MAX; i++)
{
flag = 0;
//to check if divisible apart from 1 & itself
//loop starts from 2 to ignore divisibilty by 1 & ends before the number itself
for (j=2; j<i; j++)
{
if(i%j == 0)
{
//number is not prime
flag = 1;
break;
}
}
//is prime
if (flag == 0){
//if found the nth prime number
if(++count == n)
{
printf("%d", i);
break;
}
}
}
}
int main(){
int n;
scanf("%d", &n);
/*if n is odd
nth number in main series will be found at (n/2 + 1) position
in fibonacci sub series
else
if n is even then it will be found in (n/2) position in prime sub series */
def prime(num):
if num==1:
return False
if num==2 or num==3:
return True
if num%2==0 or num%3==0:
return False
i=5
while(i*i<=num):
if(num%i==0 or num%(i+2)==0):
return False
i+=6
return True
def func(num):
i=1
while(num!=0):
if prime(i):
num=num-1
i=i+1
return i-1
def function(num):
if num%2==0:
return func(num//2)
else:
return func(num//2+1)
num = int(input())
print(function(num))
Kindly join our Discord channel if you have nay technical query : Discord
#Java code
import java.util.Scanner;
public class TCS_NQT1 {
static void fibo(int n)
{
int a = 0;
int b = 1;
int store;
for(int i = 1; i<=n; i++ )
{
store = a+b;
a=b;
b=store;
}
System.out.println(a+ " ");
}
static void prime(int n)
{
int max = 500;
int i ;
int j;
int flag;
int count = 0;
for(i = 2;i<=max;i++)
{
flag =0;
for(j = 2 ;j<i;j++){
if(i%j == 0)
{
flag =1;
break;
}
}
if(flag ==0)
if(++count == n)
{
System.out.print(i);
break;
}
}
}
public static void main(String args[])
{
int n;
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
if(n%2==1)
fibo(n/2+1);
else
prime(n/2);
}
}
def fibbo(n):
a,b=0,1
if n==0:
print(“0”)
else:
temp=0
for i in range(n-1):
temp=a+b
a,b=b,temp
print(temp)
def odd(n):
x=2
while n>1:
prime=0
for i in range(1,x+2):
if (x+1)%i==0:
prime+=1
if prime==2:
n=n-1
x=x+1
print(x)
ip=int(input())
if ip%2==0:
fibbo(ip)
else:
odd(ip)
#include
#define MAX 99999
void fibonacci(int n)
{
/* Variable initialization */
int a = 0, b = 1, next;
//the below code is for fibonacci series till nth position
for (int i = 1; i<=n; i++)
{
next = a + b;
a = b;
b = next;
}
//will print a not b or next as they are stored to calculate next and next to next term
printf("%d", a);
}
void prime(int n)
{
int i, j, flag, count =0;
//as prime numbers in given question start from 2
for (i=2; i<=MAX; i++)
{
flag = 0;
//to check if divisible apart from 1 & itself
//loop starts from 2 to ignore divisibilty by 1 & ends before the number itself
for (j=2; j<i; j++)
{
if(i%j == 0)
{
//number is not prime
flag = 1;
break;
}
}
//is prime
if (flag == 0){
//if found the nth prime number
if(++count == n)
{
printf("%d", i);
break;
}
}
}
}
int main(){
int n;
scanf("%d", &n);
/*if n is odd
nth number in main series will be found at (n/2 + 1) position
in fibonacci sub series
else
if n is even then it will be found in (n/2) position in prime sub series */
if(n%2 == 1)
fibonacci (n/2 + 1);
else
prime(n/2);
return 0;
}