void fibonacci(int n)
{
/* Variable initialization */
int a = 0, b = 1, next;
//the below code is for fibonacci series till nth position
for (int i = 1; i<=n; i++)
{
next = a + b;
a = b;
b = next;
}
//will print a not b or next as they are stored to calculate next and next to next term
printf("%d", a);
}
void prime(int n)
{
int i, j, flag, count =0;
//as prime numbers in given question start from 2
for (i=2; i<=MAX; i++)
{
flag = 0;
//to check if divisible apart from 1 & itself
//loop starts from 2 to ignore divisibilty by 1 & ends before the number itself
for (j=2; j<i; j++)
{
if(i%j == 0)
{
//number is not prime
flag = 1;
break;
}
}
//is prime
if (flag == 0){
//if found the nth prime number
if(++count == n)
{
printf("%d", i);
break;
}
}
}
}
int main(){
int n;
scanf("%d", &n);
/*if n is odd
nth number in main series will be found at (n/2 + 1) position
in fibonacci sub series
else
if n is even then it will be found in (n/2) position in prime sub series */
def fibbo(n):
n1, n2 = 0, 1
count = 0
if n <= 0:
print("Please enter a positive integer")
elif n == 1:
print(n1)
else:
while count < n:
nth = n1 + n2
n1 = n2
n2 = nth
count += 1
print(n1)
def prime(n):
count = 0
for i in range(2, 99999):
flag=0
for j in range(2,i):
if (i % j == 0):
flag=1
break
if flag == 0:
count+=1
if count == n:
print(i)
break
# main
n = int(input())
if n%2 == 1:
fibbo(n//2+1)
else:
prime(n//2)
n=int(input(“enter the n:”))
lst=[]
lst1=[]
for i in range(1,9999):
if(i>1):
for j in range(2,i):
if(i%j==0):
break;
else:
lst.append(i)
first=1
second=1
temp=0
for i in range(0,n):
lst1.append(first)
temp=first+second
first=second
second=temp
for i in range(0,n):
print(lst1[i],end=” “)
print(lst[i],end=” “)
void fibonacci(int n)
{
int a=0, b=1,next, i ;
for(i= 1; i<=n; i++)
{
next = a+b;
a=b;
b= next;
}
printf("%d",a);
}
void prime(int n)
{
int count=0,i;
for(i=1;i<= n;i++)
{
if(n%i==0)
count++;
}
if(count==2)
printf("It is a prime number");
else
printf("It is not a prime number");
}
int main()
{
int num;
printf("Enter the term ")
scanf("%d", &num);
if(num%2 ==1)
fibonacci(num/2 + 1);
else
prime(num/2);
def fibbo(n):
n1, n2 = 0, 1
count = 0
if n <= 0:
print("Please enter a positive integer")
elif n == 1:
print(n1)
else:
while count < n:
nth = n1 + n2
n1 = n2
n2 = nth
count += 1
print(n1)
def prime(n):
count = 0
for i in range(2, 99999):
flag=0
for j in range(2,i):
if (i % j == 0):
flag=1
break
if flag == 0:
count+=1
if count == n:
print(i)
break
# main
n = int(input())
if n%2 == 1:
fibbo(n//2+1)
else:
prime(n//2)
import java.util.*;
public class Sample {
public static int even(int num) {
//odd term
int i=0;
int start=2;
while(i<num) {
int count=0;
int j=1;
while(j<=start) {
if(start%j==0) {
count++;
}
j++;
}
start++;
if(count==2) {
i++;
}
}
return (start-1);
}
public static int odd(int num) {
//fibo
int a=1;
int b=1;
if(num==1) {
return 1;
}
if(num==2) {
return 1;
}
int count=2;
int c=0;
while(count<num) {
c=a+b;
a=b;
b=c;
count++;
}
return c;
}
public static void main(String args[]) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if(n%2!=0) {
int num=Math.round((float)n/2);
System.out.println(odd(num));
}
else {
int num=n/2;
System.out.println(even(num));
}
}
}
#include
#define MAX 99999
void fibonacci(int n)
{
/* Variable initialization */
int a = 0, b = 1, next;
//the below code is for fibonacci series till nth position
for (int i = 1; i<=n; i++)
{
next = a + b;
a = b;
b = next;
}
//will print a not b or next as they are stored to calculate next and next to next term
printf("%d", a);
}
void prime(int n)
{
int i, j, flag, count =0;
//as prime numbers in given question start from 2
for (i=2; i<=MAX; i++)
{
flag = 0;
//to check if divisible apart from 1 & itself
//loop starts from 2 to ignore divisibilty by 1 & ends before the number itself
for (j=2; j<i; j++)
{
if(i%j == 0)
{
//number is not prime
flag = 1;
break;
}
}
//is prime
if (flag == 0){
//if found the nth prime number
if(++count == n)
{
printf("%d", i);
break;
}
}
}
}
int main(){
int n;
scanf("%d", &n);
/*if n is odd
nth number in main series will be found at (n/2 + 1) position
in fibonacci sub series
else
if n is even then it will be found in (n/2) position in prime sub series */
if(n%2 == 1)
fibonacci (n/2 + 1);
else
prime(n/2);
return 0;
}
package pkg;
import java.util.Scanner;
public class MixtureSeries1 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n%2 == 0) {
prime(n/2);
}else {
fibonacci(n/2 + 1);
}
}
public static void fibonacci(int n) {
int t1=0, t2 = 1, temp = 1;
for(int i = 1; i <= n; i++) {
t1=t2;
t2= temp;
temp= t1+t2;
}
System.out.println(t1);
}
public static void prime(int n) {
int t = 1;
boolean flag = false;
for(int i = 1; i <= n; i++) {
for(int j = ++t; j < 100; j++) {
flag = false;
for(int k = 2; k <= j/2; k++) {
if(j%k==0) {
flag = true;
break;
}
}
if(flag==false) {
t = j;
break;
}
}
}
System.out.println(t);
}
}
from math import sqrt
MAX=1000
def nthprime(n) :
count=0
for i in range(2,MAX+1) :
check=0
for j in range(2,int(sqrt(i))+1) :
if i%j==0 :
check=1
break
if check==0 :
count=count+1
if count==n :
return i
break
def nthFibonacci(n) :
f = [0] * (n+2)
f[0],f[1]=1,1
for i in range(2,n+1) :
f[i]=f[i-1]+f[i-2]
return f[n]
if __name__ == “__main__” :
n=int(input())
if n%2 ==0 :
n=n//2
n=nthprime(n)
print(n)
else :
n=(n//2) +1
n=nthFibonacci(n-1)
print(n)
def fibbo(n):
n1, n2 = 0, 1
count = 0
if n <= 0:
print("Please enter a positive integer")
elif n == 1:
print(n1)
else:
while count < n:
nth = n1 + n2
n1 = n2
n2 = nth
count += 1
print(n1)
def prime(n):
count = 0
for i in range(2, 99999):
flag=0
for j in range(2,i):
if (i % j == 0):
flag=1
break
if flag == 0:
count+=1
if count == n:
print(i)
break
# main
n = int(input())
if n%2 == 1:
fibbo(n//2+1)
else:
prime(n//2)
package PrepInsta;
import java.util.Scanner;
public class Series2 {
public static void isPrime(int n)
{
int count,m=0;
if(n==1)
System.out.println(2);
for(int i=2;i>1;i++)
{
count=0;
for(int j=2;j<i; j++)
{
if(i%j==0)
count++;
}
if(count==0)
m++;
if(m==n)
{
System.out.println(i);
break;
}
}
}
public static void isFibo(int n)
{
int a=1;
int b=1;
int c=0;
if(n==1 || n==2)
System.out.println(1);
else
{
for(int i=3;i<=n;i++)
{
c=a+b;
a=b;
b=c;
}
System.out.println(c);
}
}
public static void main(String[] args) {
Scanner sc =new Scanner(System.in);
System.out.println("Enter term: ");
int n=sc.nextInt();
if(n%2==0)
isPrime(n/2);
if(n%2==1)
isFibo((n/2)+1);
}
}
n=int(input(“enter the n:”))
lst=[]
lst1=[]
for i in range(1,9999):
if(i>1):
for j in range(2,i):
if(i%j==0):
break;
else:
lst.append(i)
first=1
second=1
temp=0
for i in range(0,n):
lst1.append(first)
temp=first+second
first=second
second=temp
for i in range(0,n):
print(lst1[i],end=” “)
print(lst[i],end=” “)
public class Question1
{
void Prime(int n)
{
int count=0,prime_num=0;
for(int i=2;i<=100;i++)
{
int c=0;
for(int j=1;j<=i;j++)
{
if(i%j==0)
{
c++;
}
}
if(c==2)
count++;
if(count==n)
{
prime_num=i;
System.out.println(prime_num);
break;
}
}
}
void Fibonacci(int n)
{
int a=0,b=1,c;
for(int i=1;i<=n;i++)
{
c=a+b;
a=b;
b=c;
}
System.out.println(a);
}
public static void main(String args[])
{
Question1 ob=new Question1();
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if(n%2==0)
ob.Prime(n/2);
else
ob.Fibonacci(n/2+1);
}
}
def fib(num):
a = 0
b = 1
for i in range(1,num+1):
c = a + b
a = b
b = c
print(c)
def prime(num):
for num in range(2, 9999):
if num > 1:
for i in range(2, num):
if num % i == 0:
break
else:
print(num)
num = int(input())
if num%2 == 1:
fib(num//2+1)
else:
prime(num//2)
#include
#include
void fibonacci(int n)
{
int a=0, b=1,next, i ;
for(i= 1; i<=n; i++)
{
next = a+b;
a=b;
b= next;
}
printf("%d",a);
}
void prime(int n)
{
int count=0,i;
for(i=1;i<= n;i++)
{
if(n%i==0)
count++;
}
if(count==2)
printf("It is a prime number");
else
printf("It is not a prime number");
}
int main()
{
int num;
printf("Enter the term ")
scanf("%d", &num);
if(num%2 ==1)
fibonacci(num/2 + 1);
else
prime(num/2);
return 0;
}
ls = [1,1]
for i in range(2,100):
ls.append(ls[i-1]+ls[i-2])
# print(ls)
ls1 = []
while len(ls1)1:
for j in range(2,i):
if i%j==0:
break
else:
ls1.append(i)
ls2 = []
for i in range(0,100):
ls2.append(ls1[i])
# print(ls1)
# print(ls2)
ls3 = []
count = 0
count1 = 0
for i in range(0,100):
if i%2==0:
ls3.append(ls[count])
count += 1
else:
ls3.append(ls2[count1])
count1 += 1
print(ls3[int(input())-1])
def fibbo(n):
n1, n2 = 0, 1
count = 0
if n <= 0:
print("Please enter a positive integer")
elif n == 1:
print(n1)
else:
while count < n:
nth = n1 + n2
n1 = n2
n2 = nth
count += 1
print(n1)
def prime(n):
count = 0
for i in range(2, 99999):
flag=0
for j in range(2,i):
if (i % j == 0):
flag=1
break
if flag == 0:
count+=1
if count == n:
print(i)
break
# main
n = int(input())
if n%2 == 1:
fibbo(n//2+1)
else:
prime(n//2)