Program to find Minimum number of merge operations required to make an array palindrome in C
Minimum number of merge operations required to make an array palindrome in C
Here, in this page we will discuss the program to find Minimum number of merge operations required to make an array palindrome in C programming language. We are given with an array and we need to print an integer value denoting the number of operations required.
Example :
Input : arr[5] : {15, 4, 6, 15}Output : 1
Explanation : We need to merge 4 and 6 so, array will become, arr[3] : {15, 10, 15}. Now, the array become palindromic, hence we need to do 1 merging operation to make the given array palindromic.
Method Discussed :
- Method 1 : Using Iteration
- Method 2 : Using Recursion
Method 1 :
- Declare a variable say, count=0, that will count the required merging operation.
- Take two variables, i=0, and j=n-1.
- Now, run a loop till i<j, inside loop check if (arr[i]==arr[j]), then increase the value of i by 1 and decrease the value of j by 1.
- Else if (arr[i]>arr[j]), then set arr[j-1] = arr[j-1]+arr[j] and decrease the value of j and increase the value of count by 1.
- Else set, arr[i+1] = arr[i]+arr[i+1] and increase the value of i and count by 1.
- After the traversal print the value of count.
Time and Space Complexity :
- Time-Complexity : O(n)
- Space-Complexity : O(1)
Method 1 : Code in C
Run
#include<stdio.h>
int main(){
int arr[] = {1, 4, 5, 9, 1};
int n = sizeof(arr)/sizeof(arr[0]), count = 0;
int i = 0, j = n-1;
while(iarr[j])
{
arr[j-1] = arr[j]+arr[j-1];
j--;
count++;
}
else{
arr[i+1] = arr[i]+arr[i+1];
i++;
count++;
}
}
printf("Required Minimum Operations : %d", count);
}
Output :
Required Minimum Operations : 1
Method 2 (Using Recursion) :
- Create a recursive function say, fun() pass arr and two values 0 and n-1.
- In the fun(), return 0, if(i==j or i>j)
- Otherwise, check if (arr[i]==arr[j]), then return(1+fun(arr, i+1, j-1))
- Else check if (arr[i]>arr[j]), then set arr[j-1] = arr[j-1]+arr[j] and return(1+fun(arr, i, j-1))
- Else set, arr[i+1] = arr[i]+arr[i+1] and return(1+fun(arr, i+1, j)).
Time and Space Complexity :
- Time-Complexity : O(n)
- Space-Complexity : O(1)
Method 2 : Code in C
Run
#include<stdio.h>
int fun(int arr[], int i, int j){
if( i==j || i>j )
return 0;
if(arr[i]==arr[j])
return fun(arr, i+1, j-1);
else if(arr[i]>arr[j]){
arr[j-1] = arr[j]+arr[j-1];
return (1+fun( arr, i, j-1));
}
else{
arr[i+1] = arr[i]+arr[i+1];
return (1+fun( arr, i+1, j));
}
}
int main(){
int arr[] = {1, 4, 5, 9, 1};
int n = sizeof(arr)/sizeof(arr[0]);
printf("Required Minimum Operations : %d", fun(arr, 0, n-1));
}
Output :
Required Minimum Operations : 1
Prime Course Trailer
Related Banners
Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription

Login/Signup to comment