Check for Children-Sum property in Binary Tree in C

Children-Sum property in Binary Tree

Children-Sum property says that for each node sum of its left and right children should be equal to node value.

Also, following assumptions are to be kept in mind while recursively traversing tree

  1. A leaf node satisfies children sum property because leaf nodes don’t have any child nodes.
  2. An Empty tree satisfies Children sum property.
Check for Children-Sum property in Binary Tree in C-1

Children Sum Property In Binary Tree

Algorithm :

  • Traverse the tree.
  • For every node in tree check whether the value in root node equals the sum of its leftchild and rightchild.
  • If yes continue from Step 1 Until, root becomes Null i.e,  root==NULL
  • If No return 0.
Check for Children-Sum property in Binary Tree in C

Code in C based on above approach

Run
#include <stdio.h>
#include <stdlib.h>

struct node
{
  int data;
  struct node *left;
  struct node *right;
};

int isSumProperty (struct node *node)
{
  int left_data = 0, right_data = 0;

  if (node == NULL || (node->left == NULL && node->right == NULL))
    return 1;
  else
    {
      if (node->left != NULL)
	left_data = node->left->data;

      if (node->right != NULL)
	right_data = node->right->data;

      if ((node->data == left_data + right_data) && isSumProperty (node->left)
	  && isSumProperty (node->right))
	return 1;
      else
	return 0;
    }
}

struct node *newNode (int data)
{
  struct node *node = (struct node *) malloc (sizeof (struct node));
  node->data = data;
  node->left = NULL;
  node->right = NULL;
  return (node);
}

int main ()
{
  struct node *root = newNode (10);
  root->left = newNode (8);
  root->right = newNode (2);
  root->left->left = newNode (3);
  root->left->right = newNode (5);
  root->right->right = newNode (2);
  if (isSumProperty (root))
    printf ("The given tree satisfies the children sum property ");
  else
    printf ("The given tree does not satisfy the children sum property ");

  return 0;
}

Output:

The given tree satisfies the children sum property

Prime Course Trailer

Related Banners

Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription

Get over 200+ course One Subscription

Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others

Checkout list of all the video courses in PrepInsta Prime Subscription

Checkout list of all the video courses in PrepInsta Prime Subscription

Introduction to Trees

Binary Trees

Binary Search Trees

Traversals

  • Traversal in Trees
  • Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
  • Tree Traversals: Depth First Search (DFS) : C | C++ | Java
  • Construct a Binary Tree from Postorder and Inorder

B – Trees

AVL Trees

  • AVL Trees
    • AVL Trees: Introduction
    • AVL Tree Insertion : C | C++ | Java
    • AVL Tree Deletion : C | C++ | Java
    • Insertion in a Binary Tree (Level Order) – C | C++ | Java
    • Searching in Binary Tree – C | C++ | Java
    • Searching in a Binary Search Tree – C | C++ | Java

Complete Programs for Trees

  • Depth First Traversals – C | C++ | Java
  • Level Order Traversal – C | C++Java
  • Construct Tree from given Inorder and Preorder traversals – C | C++Java
  • Construct Tree from given Postorder and Inorder traversals – C | C++Java
  • Construct Tree from given Postorder and Preorder traversal – C | C++Java
  • Find size of the Binary tree – C | C++Java
  • Find the height of binary tree – C | C++Java
  • Find maximum in binary tree – C | C++Java
  • Check whether two tree are identical- CC++Java
  • Spiral Order traversal of Tree- CC++Java
  • Level Order Traversal Line by Line – C | C++Java
  • Hand shaking lemma and some Impotant Tree Properties.
  • Check If binary tree if Foldable or not.- CC++Java
  • check whether tree is Symmetric – C| C++Java.
  • Check for Children-Sum in Binary Tree- C|C++Java
  • Sum of all nodes in Binary Tree- CC++ | Java
  • Lowest Common Ancestor in Binary Tree- CC++ | Java

Introduction to Trees

Binary Trees

Binary Search Trees

Traversals

  • Traversal in Trees
  • Tree Traversals: Breadth-First Search (BFS) : C | C++ | Java
  • Tree Traversals: Depth First Search (DFS) : C | C++ | Java
  • Construct a Binary Tree from Postorder and Inorder

B – Trees

AVL Trees

  • AVL Trees
    • AVL Trees: Introduction
    • AVL Tree Insertion :  C | C++ | Java
    • AVL Tree Deletion : C | C++ | Java
    • Insertion in a Binary Tree (Level Order) – C | C++ | Java
    • Searching in Binary Tree – C | C++ | Java
    • Searching in a Binary Search Tree – C | C++ | Java

Complete Programs for Trees

  • Depth First Traversals – C | C++ | Java
  • Level Order Traversal – C | C++Java
  • Construct Tree from given Inorder and Preorder traversals – C | C++Java
  • Construct Tree from given Postorder and Inorder traversals – C | C++Java
  • Construct Tree from given Postorder and Preorder traversal – C | C++Java
  • Find size of the Binary tree – C | C++Java
  • Find the height of binary tree – C | C++Java
  • Find maximum in binary tree – C | C++Java
  • Check whether two tree are identical- CC++Java
  • Spiral Order traversal of Tree- CC++Java
  • Level Order Traversal LIne by Line – C | C++Java
  • Hand shaking lemma and some Impotant Tree Properties.
  • Check If binary tree if Foldable or not.- CC++Java
  • check whether tree is Symmetric  C| C++Java.
  • Check for Children-Sum in Binary Tree- C|C++Java
  • Sum of all nodes in Binary Tree- CC++ | Java
  • Lowest Common Ancestor in Binary Tree. CC++ | Java