Program to Find Median of two Sorted Arrays of Equal Size in Java

Median of two sorted arrays of equal size in Java

Here, in this page we will discuss the program to find median of two sorted arrays of equal size in Java programming language. We are given with two arrays say arr1[] and arr2[] of the same size say n . We need to find the median after merging these arrays.

Median of two sorted arrays of equal size in Java

Method Discussed :

  • Method 1 : Linear Approach
  • Method 2 : By comparing the medians of two arrays

Let’s discuss them one by one in brief,

Method 1:

  • The given arrays are sorted, so merge the sorted arrays in an efficient way.
  • Keep the count of elements inserted in the output array or printed form.
  • So when the elements in the output array are half the original size of the given array print the element as a median element.

Method 1 : Code in Java

Run
class Main
{
    static int getMedian(int ar1[], int ar2[], int n)
    {  
        int i = 0; 
        int j = 0;
        int count;
        int m1 = -1, m2 = -1;
      
        for (count = 0; count <= n; count++)
        {
            if (i == n)
            {
                m1 = m2;
                m2 = ar2[0];
                break;
            }
      
            else if (j == n)
            {
                m1 = m2;
                m2 = ar1[0];
                break;
            }
            
            if (ar1[i] <= ar2[j])
            {  
                m1 = m2; 
                m2 = ar1[i];
                i++;
            }
            else
            {
                m1 = m2; 
                m2 = ar2[j];
                j++;
            }
        }
      
        return (m1 + m2)/2;
    }
      
    public static void main (String[] args)
    {
        int ar1[] = {1, 12, 15, 26, 38};
        int ar2[] = {2, 13, 17, 30, 45};
      
        int n1 = ar1.length;
        int n2 = ar2.length;
        if (n1 == n2)
            System.out.println("Median is " +getMedian(ar1, ar2, n1));
        else
            System.out.println("arrays are of unequal size");
    }   
}

Output :

Median is 16

Method 2:

This method works by first getting medians of the two sorted arrays and then comparing them.

Method 2 : Code in Java

Run
import java.util.*;
class Main {
 
    static int getMedian(
        int[] a, int[] b, int startA,
        int startB, int endA, int endB)
    {
        if (endA - startA == 1) {
            return (Math.max(a[startA], b[startB]) + Math.min(a[endA], b[endB]))/ 2;
        }
        
        int m1 = median(a, startA, endA);
 
        int m2 = median(b, startB, endB);
 
        if (m1 == m2) {
            return m1;
        }
 
        else if (m1 < m2) {
            return getMedian(
                a, b, (endA + startA + 1) / 2,
                startB, endA,
                (endB + startB + 1) / 2);
        }
 
        else {
            return getMedian(
                a, b, startA,
                (endB + startB + 1) / 2,
                (endA + startA + 1) / 2, endB);
        }
    }
 
    static int median( int[] arr, int start, int end)
    {
        int n = end - start + 1;
        if (n % 2 == 0) {
            return ( arr[start + (n / 2)]+ arr[start + (n / 2 - 1)])/ 2;
        }
        else {
            return arr[start + n / 2];
        }
    }
 
    public static void main(String[] args)
    {
        int ar1[] = { 1, 2, 3, 6 };
        int ar2[] = { 4, 6, 8, 10 };
        int n1 = ar1.length;
        int n2 = ar2.length;
        if (n1 != n2) {
            System.out.println("Doesn't work for arrays of unequal size");
        }
        else if (n1 == 0) {
            System.out.println("Arrays are empty.");
        }
        else if (n1 == 1) {
            System.out.println((ar1[0] + ar2[0]) / 2);
        }
        else {
            System.out.println("Median is " + getMedian(ar1, ar2, 0, 0,ar1.length - 1, ar2.length - 1));
        }
    }
}

Output :

Median is 5

Prime Course Trailer

Related Banners

Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription