Mtouch Quiz

Question 1

Time: 00:00:00
 \frac{1}{2}

 

Calculate (144^{-312}) ?

 

144^(-312)^1/6

 

 \frac{1}{2} \

 

 \frac{(1+2)}{(2 +\frac{4}{3})}\\

 

x^2

 

 \frac{1}{2} \

 

 \frac{(1+2)}{(2 +\frac{4}{3})}\\

 

\frac{1}{7}=0.\overline{142857}

 

(\frac{1}{2})^2 \

 

\implies

 

 \neq

 

\ a_1 + a_5 \

 

\overline{A}

 

c^20

 

18*\tfrac{\pi }{180^{\circ}}

 

\frac{Pl}{2}

 

\frac{\alpha ^{n}+\beta ^{n}}{\frac{1}{\alpha ^{n}}+\frac{1}{\beta ^{n}}}

 

n * βn)

 

t\frac{\partial x}{\partial t} + x = t \text{ is }

 

IF = e^{\int Pdt} = e^{\int \frac{1}{t}dt} = e^{lnt} = t

 

x^{x} = (e^{i\tfrac{\pi }{2}})^{x}

 

A−\left ( \forall x p(x)\Rightarrow \forall x q(x) \right )\Rightarrow \left ( \exists x \neg p(x) \vee \forall x q(x) \right )

 

\frac{1}{2\pi j}\oint_{C} f(z)dz

 

\frac{\partial^2y(t) }{\partial t^2} + 2\frac{\partial y(t)}{\partial t} + y(t) = \delta (t) \text{ with } y(t)|_{t=0^{-}} = -2 \text{ and } \frac{\partial y}{\partial t}\mid _{t = 0^{-}} = 0

 

\iint_{s} 5\vec{r}\cdot \hat{n}dS \text{ is}

 

To write Augmented matrix:

{\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\a & -a & 3 & 5 \\5 & -3 & a & 6 \\\end{array}\right]}

 

\begin{vmatrix}1&  1& 1& :& 6\\1& 4&  6& :& 20\\1& 4& \lambda &  :& \mu \\\end{vmatrix}

 

=L^{−1}\left ( \begin{bmatrix}S& 0\\S& 0\end{bmatrix}−\begin{bmatrix}0& 1\\ −2& −3\end{bmatrix} \right )^{−1}

 

L^{−1}\left ( \begin{bmatrix}\frac{s+3}{(s+1)(s+2)}& \frac{1}{(s+1)(s+2)}\\ \frac{−2}{(s+1)(s+2)}& \frac{s}{(s+1)(s+2)}\end{bmatrix} \right )

 

=\left [ x^{4}+32x^{5} \right ]^{1}_{0}=33

 

\iiint \bigtriangledown\cdot  Pdv

 

 

​A_{10} =0, A_{11} =1, A_{14} =0, A_{15 }=0

 

A_{10} =0, A_{11} =1, A_{14} =0, A_{15 }=0\alpha

 

A_{10} =0, A_{11} =1, A_{14} =0, A_{15 }=0\alpha

 

L^{−1}\left ( \begin{bmatrix}\frac{s+3}{(s+1)(s+2)}& \frac{1}{(s+1)(s+2)}\\ \frac{−2}{(s+1)(s+2)}& \frac{s}{(s+1)(s+2)}\end{bmatrix} \right )

L^{−1}\left ( \begin{bmatrix}\frac{s+3}{(s+1)(s+2)}& \frac{1}{(s+1)(s+2)}\\ \frac{−2}{(s+1)(s+2)}& \frac{s}{(s+1)(s+2)}\end{bmatrix} \right )

\begin{vmatrix}1& 1& 1& :& 6\\1& 4& 6& :& 20\\1& 4& \lambda & :& \mu \\\end{vmatrix}

\begin{vmatrix}1& 1& 1& :& 6\\1& 4& 6& :& 20\\1& 4& \lambda & :& \mu \\\end{vmatrix}

\frac{\partial^2y(t) }{\partial t^2} + 2\frac{\partial y(t)}{\partial t} + y(t) = \delta (t) \text{ with } y(t)|_{t=0^{-}} = -2 \text{ and } \frac{\partial y}{\partial t}\mid _{t = 0^{-}} = 0

\frac{\partial^2y(t) }{\partial t^2} + 2\frac{\partial y(t)}{\partial t} + y(t) = \delta (t) \text{ with } y(t)|_{t=0^{-}} = -2 \text{ and } \frac{\partial y}{\partial t}\mid _{t = 0^{-}} = 0

\begin{vmatrix}1& 1& 1& :& 6\\1& 4& 6& :& 20\\1& 4& \lambda & :& \mu \\\end{vmatrix}

\begin{vmatrix}1& 1& 1& :& 6\\1& 4& 6& :& 20\\1& 4& \lambda & :& \mu \\\end{vmatrix}

Once you attempt the question then PrepInsta explanation will be displayed.

Please login to submit your explanation

Start

Question 2

Time: 00:00:00


 



Once you attempt the question then PrepInsta explanation will be displayed.

Please login to submit your explanation

Start

Question 3

Time: 00:00:00
















































Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Infosys Aptitude Questions Topics No. of questions in test Suggested Avg. Time Difficulty Other
Data Interpretation 0 - 3 2 mins Medium Medium
Percentages 0 - 3 2 mins Medium Medium
Profit and Loss 0 - 3 2 mins Medium Medium
Probability 0 - 3 2 mins Medium Medium
Area, Shape and Parameter 0 - 3 2 mins Medium Medium

Once you attempt the question then PrepInsta explanation will be displayed.

Please login to submit your explanation

Start

Question 4

Time: 00:00:00


   

   

 \frac{1}{2}   Calculate (144^{-312}) ?   144^(-312)^1/6    \frac{1}{2} \    \frac{(1+2)}{(2 +\frac{4}{3})}\\     x^2      \frac{1}{2} \    

 \frac{1}{2}   Calculate (144^{-312}) ?   144^(-312)^1/6    \frac{1}{2} \    \frac{(1+2)}{(2 +\frac{4}{3})}\\     x^2      \frac{1}{2} \    

     \frac{1}{2}   Calculate (144^{-312}) ?   144^(-312)^1/6    \frac{1}{2} \    \frac{(1+2)}{(2 +\frac{4}{3})}\\   x^2    \frac{1}{2} \  

     \frac{1}{2}   Calculate (144^{-312}) ?   144^(-312)^1/6    \frac{1}{2} \    \frac{(1+2)}{(2 +\frac{4}{3})}\\   x^2    \frac{1}{2} \  

Once you attempt the question then PrepInsta explanation will be displayed.

Please login to submit your explanation

Start

Question 5

Time: 00:00:00


 \frac{1}{2}

Calculate (144^{-312}) ?

144^(-312)^1/6

 \frac{1}{2} \

 \frac{(1+2)}{(2 +\frac{4}{3})}\\

 

 

 \frac{1}{2} \  \frac{(1+2)}{(2 +\frac{4}{3})}\\ \frac{1}{7}=0.\overline{142857} (\frac{1}{2})^2 \ \implies    \frac{1}{2} \    \frac{(1+2)}{(2 +\frac{4}{3})}\\   \frac{1}{7}=0.\overline{142857}   (\frac{1}{2})^2 \   \implies

 \frac{1}{2} \  \frac{(1+2)}{(2 +\frac{4}{3})}\\ \frac{1}{7}=0.\overline{142857} (\frac{1}{2})^2 \ \implies    \frac{1}{2} \    \frac{(1+2)}{(2 +\frac{4}{3})}\\   \frac{1}{7}=0.\overline{142857}   (\frac{1}{2})^2 \   \implies

Once you attempt the question then PrepInsta explanation will be displayed.

Please login to submit your explanation

Start

["0","40","60","80","100"]
["Need more practice!","Keep trying!","Not bad!","Good work!","Perfect!"]

Completed

0/0

Accuracy

0%