# Deletion In AVL Tree In Java

## Deletion in an AVL Tree

AVL tree is self balancing tree in which for all nodes, the difference of height between the left subtree and the right subtree is less than or equal to 1. In this article, we will see how to perform deletion in AVL tree. ## Deletion in an AVL Tree

• Deletion in an AVL tree is similar to that in a BST.
• Deletion of a node tends to disturb the balance factor. Thus to balance the tree, we again use the Rotation mechanism.
• Deletion in AVL tree consists of two steps:
• Removal of the node: The given node is removed from the tree structure. The node to be removed can either be a leaf or an internal node.
• Re-balancing of the tree: The elimination of a node from the tree can cause disturbance to the balance factor of certain nodes. Thus it is important to re- balance the b_fact of the nodes; since the balance factor is the primary aspect that ensures the tree is an AVL Tree.

Note: There are certain points that must be kept in mind during a deletion process.

• If the node to be deleted is a leaf node, it is simply removed from the tree.
• If the node to be deleted has one child node, the child node is replaced with the node to be deleted simply.
• If the node to be deleted has two child nodes then,
• Either replace the node with it’s inorder predecessor , i.e, the largest element of the left sub tree.
• Or replace the node with it’s inorder successor , i.e, the smallest element of the right sub tree.

## Example For Deletion in AVL Tree ## Code in JAVA

`class Node{	int key, height;	Node left, right;	Node(int d)	{		key = d;		height = 1;	}}class AVLTree{	Node root;	int height(Node N)	{		if (N == null)			return 0;		return N.height;	}	Node rotateRight(Node b)	{		Node a = b.left;		Node c = a.right;		a.right = b;		b.left = c;		b.height = Math.max(height(b.left), height(b.right)) + 1;		a.height = Math.max(height(a.left), height(a.right)) + 1;		return a;	}	Node rotateLeft(Node a)	{		Node b = a.right;		Node c = b.left;		b.left = a;		a.right = c;		a.height = Math.max(height(a.left), height(a.right)) + 1;		b.height = Math.max(height(b.left), height(b.right)) + 1;		return b;	}	int getBalance(Node N)	{		if (N == null)			return 0;		return height(N.left) - height(N.right);	}	Node insert(Node node, int key)	{		if (node == null)			return (new Node(key));		if (key < node.key)			node.left = insert(node.left, key);		else if (key > node.key)			node.right = insert(node.right, key);		else 			return node;		node.height = 1 + Math.max(height(node.left),							height(node.right));		int balance = getBalance(node);		if (balance > 1 && key < node.left.key)			return rotateRight(node);		if (balance < -1 && key > node.right.key)			return rotateLeft(node);		if (balance > 1 && key > node.left.key)		{			node.left = rotateLeft(node.left);			return rotateRight(node);		}		if (balance < -1 && key < node.right.key)		{			node.right = rotateRight(node.right);			return rotateLeft(node);		}		return node;	}	Node minValueNode(Node node)	{	    Node temp;        for(temp=node;temp.left!=null;temp=temp.left);		return temp;	}	Node deleteNode(Node root, int key)	{		if (root == null)			return root;		if (key < root.key)			root.left = deleteNode(root.left, key);		else if (key > root.key)			root.right = deleteNode(root.right, key);		else		{			if ((root.left == null) || (root.right == null))			{				Node temp = null;				if (temp == root.left)					temp = root.right;				else					temp = root.left;				if (temp == null)				{					temp = root;					root = null;				}				else 					root = temp;			}			else			{				Node temp = minValueNode(root.right);				root.key = temp.key;				root.right = deleteNode(root.right, temp.key);			}		}		if (root == null)			return root;		root.height = Math.max(height(root.left), height(root.right)) + 1;    	        int balance = getBalance(root);		if (balance > 1 && getBalance(root.left) >= 0)			return rotateRight(root);		if (balance > 1 && getBalance(root.left) < 0)		{			root.left = rotateLeft(root.left);			return rotateRight(root);		}		if (balance < -1 && getBalance(root.right) <= 0)			return rotateLeft(root);		if (balance < -1 && getBalance(root.right) > 0)		{			root.right = rotateRight(root.right);			return rotateLeft(root);		}		return root;	}	void preOrder(Node node)	{		if (node != null)		{			System.out.print(node.key + " ");			preOrder(node.left);			preOrder(node.right);		}	}	public static void main(String[] args)	{		AVLTree tree = new AVLTree();    	        tree.root = tree.insert(tree.root, 3);		tree.root = tree.insert(tree.root, 1);		tree.root = tree.insert(tree.root, 5);		tree.root = tree.insert(tree.root, 0);		tree.root = tree.insert(tree.root, 2);		tree.root = tree.insert(tree.root, 4);		tree.root = tree.insert(tree.root, 6);		System.out.println("Preorder traversal is : ");		tree.preOrder(tree.root);		tree.root = tree.deleteNode(tree.root, 6);                tree.root = tree.deleteNode(tree.root, 5);                tree.root = tree.deleteNode(tree.root, 4);		System.out.println("");		System.out.println("Preorder traversal after "+"deletion of [6,5,4] :");		tree.preOrder(tree.root);	}}`

## Output

`Preorder traversal is :3 1 0 2 5 4 6Preorder traversal after deletion of [6,5,4] :1 0 3 2`