Notifications Mark All Read
No New notification
June 23, 2019
Question 1
N+1
N
N-2
N-1
Good Job!
Oops!
The first and the last node in the doubly linked list will point to Null
Please login to submit your explanation
You can check your performance of this question after Login/SignupLogin
Start
Question 2
28
31
63
127
to find the total no of nodes in nth level by 2^n-1 1 level 1 nodes, 2 level 3 nodes, 3 level 7 nodes, 4 level 15 nodes, 5 level 31 thus 7 has 127 nodes
Question 3
primitive list
None of these
node list
linked list
Explanation: A linear collection of data elements where the linear node is given by means of pointer is called linked list.
Question 4
no cycle of odd length
n^log n
n edges
a cycle of odd length
It is obvious that if a graph has an odd length cycle then it cannot be Bipartite. In Bipartite graph there are two sets of vertices such that no vertex in a set is connected with any other vertex of the same set).
A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) either connects a vertex from U to V or a vertex from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, or u belongs to V and v to U. We can also say that there is no edge that connects vertices of the same set.
Question 5
Allocation that takes place at compile time
Allocation that take place as bipartite graph
memory allocation that takes place during run time rendering the resizing of an Array
All of these
Memory allocation that takes place during run time rendering the resizing of an Array is called Dynamic Allocation in Array
Question 6
32
The formulae is n*(n-1)/2
Question 7
2h-1 -1
2h+1 -1
2h +1
2h-1 +1
The maximum no. of nodes possible in the tree is 2h+1 -1 The height of a BST is given as h
Question 8
Post-order
Pre-order
In-order
None
Inorder gives in correct order
Question 9
O(n)
O(√n)
O(log(n))
O(nlg(n))
the run time for traversing all the nodes of a binary search tree with n nodes and printing them in an order is O(n)
Question 10
(3, 8)
(8, 3)
(7, 4)
(4, 7)
Please login to report
Login/Signup to comment
Login/Signup to comment