## Longest Common Subsequence –

We have discussed Overlapping Subproblems and Optimal Substructure properties in Set 1 and Set 2 respectively. We also discussed one example problem in Set 3. Let us discuss Longest Common Subsequence (LCS) problem as one more example problem that can be solved using Dynamic Programming.

LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”, .. etc are subsequences of “abcdefg”. So a string of length n has 2^n different possible subsequences.

It is a classic computer science problem, the basis of diff (a file comparison program that outputs the differences between two files), and has applications in bioinformatics.

Examples:
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.
LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

C/C++

/* A Naive recursive implementation of LCS problem */
#include<bits/stdc++.h>

int max(int a, int b);

/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )
{
if (m == 0 || n == 0)
return 0;
if (X[m-1] == Y[n-1])
return 1 + lcs(X, Y, m-1, n-1);
else
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}

/* Utility function to get max of 2 integers */
int max(int a, int b)
{
return (a > b)? a : b;
}

/* Driver program to test above function */
int main()
{
char X[] = “AGGTAB”;
char Y[] = “GXTXAYB”;

int m = strlen(X);
int n = strlen(Y);

printf(“Length of LCS is %d”, lcs( X, Y, m, n ) );

return 0;
}

Java

/* A Naive recursive implementation of LCS problem in java*/
public class LongestCommonSubsequence
{

/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char[] X, char[] Y, int m, int n )
{
if (m == 0 || n == 0)
return 0;
if (X[m-1] == Y[n-1])
return 1 + lcs(X, Y, m-1, n-1);
else
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}

/* Utility function to get max of 2 integers */
int max(int a, int b)
{
return (a > b)? a : b;
}

public static void main(String[] args)
{
LongestCommonSubsequence lcs = new LongestCommonSubsequence();
String s1 = “AGGTAB”;
String s2 = “GXTXAYB”;

char[] X=s1.toCharArray();
char[] Y=s2.toCharArray();
int m = X.length;
int n = Y.length;

System.out.println(“Length of LCS is” + ” ” +
lcs.lcs( X, Y, m, n ) );
}

}

Python

# A Naive recursive Python implementation of LCS problem

def lcs(X, Y, m, n):

if m == 0 or n == 0:
return 0;
elif X[m-1] == Y[n-1]:
return 1 + lcs(X, Y, m-1, n-1);
else:
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));

# Driver program to test the above function
X = “AGGTAB”
Y = “GXTXAYB”
print “Length of LCS is “, lcs(X , Y, len(X), len(Y))